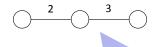


Selfish Peers

- Peers may not try to destroy the system, instead they may try to benefit from the system without contributing anything
- Such selfish behavior is called free riding or freeloading
- Free riding is a common problem in file sharing applications:
- Studies show that most users in the P2P file sharing networks do not want to provide anything
- Protocols that are supposed to be "incentive-compatible", such as BitTorrent, can also be exploited
 - The BitThief client downloads without uploading!

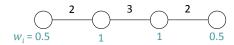
Overview

- Selfish Caching
- Nash Equilibrium
- Price of Anarchy
- Rock Paper Scissor
- Mechanism Design


Game Theory

- Game theory attempts to mathematically capture behavior in strategic situations (games), in which an individual's success in making choices depends on the choices of others.
- "Game theory is a sort of umbrella or 'unified field' theory for the rational side of social science, where 'social' is interpreted broadly, to include human as well as non-human players (computers, animals, plants)" [Aumann 1987]

Selfish Caching


- P2P system where node i experiences a demand w_i for a certain file.
 - Setting can be extended to multiple files
- A node can either
 - cache the file for cost α , or
 - get the file from the nearest node l(i) that caches it for cost $w_i \cdot d_{i,l(i)}$
- Example: $\alpha = 4$, $w_i = 1$

What is the global "best" configuration?
Who will cache the object?
Which configurations are "stable"?

Selfish Caching: Example 2

- Which are the social optima, and the Nash Equilibria in the following example?
 - $-\alpha=4$

- Nash Equilibrium

 Social optimum
- Does every game have
 - a social optimum?
 - a Nash equilibrium?

Social Optimum & Nash Equilibrium

- In game theory, the "best" configurations are called social optima
 - A social optimum maximizes the social welfare

Definition

A strategy profile is called social optimum iff it minimizes the sum of all cost.

- A strategy profile is the set of strategies chosen by the players
- "Stable" configurations are called (Nash) Equilibria

Definition

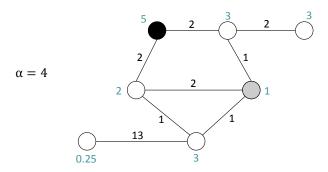
4/5

A Nash Equilibrium (NE) is a strategy profile for which nobody can improve by unilaterally changing its strategy

• Systems are assumed to magically converge towards a NE

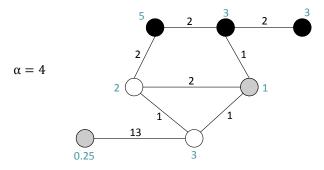
4/6

Selfish Caching: Equilibria

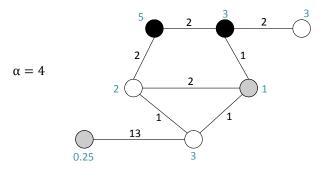

Theorem

Any instance of the selfish caching game has a Nash equilibrium

- Proof by construction:
 - The following procedure always finds a Nash equilibrium
 - 1. Put a node y with highest demand into caching set
 - 2. Remove all nodes z for which $d_{zy}w_z < \alpha$
 - 3. Repeat steps 1 and 2 until no nodes left
 - The strategy profile where all nodes in the caching set cache the file, and all others chose to access the file remotely, is a Nash equilibrium.


Selfish Caching: Proof example

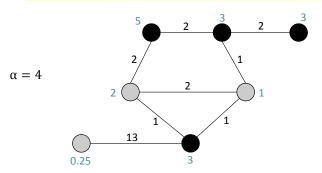
- 1. Put a node y with highest demand into caching set
- 2. Remove all nodes z for which $d_{zy}w_z < \alpha$
- 3. Repeat steps 1 and 2 until no nodes left


Selfish Caching: Proof example

- 1. Put a node y with highest demand into caching set
- 2. Remove all nodes z for which $d_{zy}w_z < \alpha$
- 3. Repeat steps 1 and 2 until no nodes left

Selfish Caching: Proof example

- 1. Put a node y with highest demand into caching set
- 2. Remove all nodes z for which $d_{zy}w_z < \alpha$
- Repeat steps 1 and 2 until no nodes left


4/9

Selfish Caching: Proof example

1. Put a node y with highest demand into caching set

4/10

- 2. Remove all nodes z for which $d_{zy}w_z < \alpha$
- 3. Repeat steps 1 and 2 until no nodes left

– Does NE condition hold for every node?

4/11 4/12

Proof

- If node x not in the caching set
 - Exists y for which $w_x d_{xy} < \alpha$
 - No incentive to cache because remote access cost $w_x d_{xy}$ are smaller than placement cost α
- If node x is in the caching set
 - For any other node y in the caching set:
 - Case 1: y was added to the caching set before x
 - It holds that $w_x d_{xy} \ge \alpha$ due to the construction
 - Case 2: y was added to the caching set after x
 - It holds that $w_x \ge w_y$, and $w_y d_{yx} \ge \alpha$ due to the construction
 - Therefore $w_x d_{xy} \ge w_y d_{yx} \ge \alpha$
 - x has no incentive to stop caching because all other caching nodes are too far away, i.e., the remote access cost are larger than α

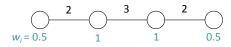
4/13

PoA for Selfish Caching with constant demand and distances

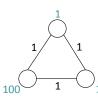
- PoA depends on demands, distances, and the topology
- If all demands and distances are equal (e.g. $w_i = 1$, $d_{ii} = 1$) ...
 - How large can the PoA grow in cliques?

- How large can the PoA grow on a star?

– How large can PoA grow in an arbitrary topology?

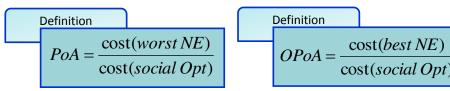

PoA for Selfish Caching

How large is the (optimistic) price of anarchy in the following examples?


1)
$$\alpha = 4$$
, $w_i = 1$

2) $\alpha = 4$

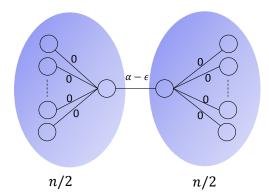
3)
$$\alpha = 101$$


Price of Anarchy (PoA)

- state
 - Unfortunately, NEs are often not optimal!

- Idea:
 - Quantify loss due to selfishness by comparing the performance of a system at Nash equilibrium to its optimal performance

With selfish nodes any caching system converges to a stable equilibrium

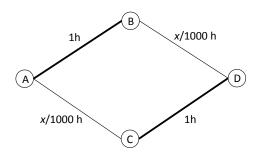

 Since a game can have more than one NE it makes sense to define a worst-case Price of Anarchy (PoA), and an optimistic Price of Anarchy (OPoA)

- $PoA \ge OPoA \ge 1$
- A PoA close to 1 indicates that a system is insusceptible to selfish behavior

PoA for Selfish Caching with constant demand

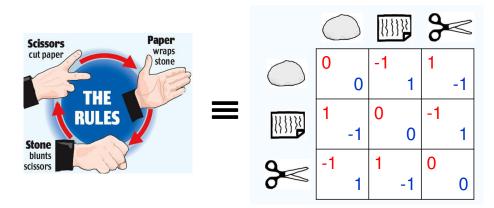
- PoA depends on demands, distances, and the topology
- Price of anarchy for selfish caching can be linear in the number of nodes even when all nodes have the same demand $(w_i = 1)$

$$cost(NE) = \alpha + \frac{n}{2}(\alpha - \varepsilon)$$


$$cost(OPT) = 2 \cdot \alpha$$

$$PoA = OPoA \stackrel{\varepsilon \to 0}{=} \frac{1}{2} + \frac{n}{4} \in \Theta(n)$$

4/17


Another Example: Braess' Paradox

- Flow of 1000 cars per hour from A to D
- Drivers decide on route based on current traffic
- Social Optimum? Nash Equilibrium? PoA?

Is there always a Nash equilibrium?

Rock Paper Scissors

- Which is the best action: , , , or ???
- What is the social optimum? What is the Nash Equilibrium?
- Any good strategies?

Mixed Nash Equilibria

- Answer: Randomize!
 - Mix between pure strategies. A mixed strategy is a probability distribution over pure strategies.
 - Can you beat the following strategy in expectation? (p[] = 1/2, p[] = 1/4, p[] = 1/4, p[] = 1/4)
 - The only (mixed) Nash Equilibrium is (1/3, 1/3, 1/3)
 - Rock Paper Scissors is a so-called Zero-sum game

Theorem [Nash 1950]

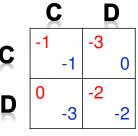
Every game has a mixed Nash equilibrium

4/18

Solution Concepts

A solution concept predicts how a game turns out

Definition


A solution concept is a rule that maps games to a set of possible outcomes, or to a probability distribution over the outcomes

- The Nash equilibrium as a solution concept predicts that any game ends up in a strategy profile where nobody can improve unilaterally.
 If a game has multiple NEs, then the game ends up in any of them.
- Other solution concepts:
 - Dominant strategies
 - A game ends up in any strategy profile where all players play a dominant strategy, given that the game has such a strategy profile
 - A strategy is dominant if, regardless of what any other players do, the strategy earns a player a larger payoff than any other strategy.
 - There are more, e.g. correlated equilibrium

Prisoner's Dilemma

- One of the most famous games in game theory is the so called Prisoner's Dilemma
 - Two criminals A and B are charged with a crime, but only circumstantial evidence exists
 - Both can cooperate (C), i.e., stay silent or they can defect (D), i.e., talk to the
 police and admit their crime
 - If both cooperate, each of them has to go to prison for one year
 - If both defect, each of them has to go to prison for three years
 - If only A defects but B chooses to cooperate, A is a crown witness and does not have to serve jail time but B gets three years (and vice versa)

Dominant strategy is to defect

4/22

4/21

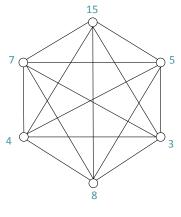
How can Game Theory help?

- Economy
 - Understand markets?
 - Predict economy crashes?
 - Sveriges Riksbank Prize in Economics ("Nobel Prize") has been awarded many times to game theorists
- Problems
 - GT models the real world inaccurately
 - Many real world problems are too complex to capture by a game
 - Human beings are not really rational
- GT in computer science
 - Players are not exactly human
 - Explain unexpected deficiencies (emule, bittorrent etc.)
 - Additional measurement tool to evaluate distributed systems

Mechanism Design

- Game Theory describes existing systems
 - Explains, or predicts behavior through solution concepts (e.g. Nash Equilibrium)
- Mechanism Design creates games in which it is best for an agent to behave as desired by the designer
 - incentive compatible systems
 - Most popular solution concept: dominant strategies
 - Sometimes Nash equilibrium
 - Natural design goals
 - Maximize social welfare
 - Maximize system perfomance

Mechanism design ≈ "inverse" game theory

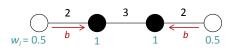

Incentives

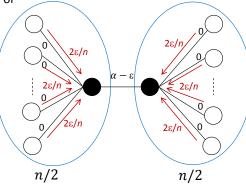
- How can a mechanism designer change the incentive structure?
 - Offer rewards, or punishments for certain actions
 - Money, better QoS
 - Emprisonment, fines, worse QoS
 - Change the options available to the players
 - Example: fair cake sharing (MD for parents)

Selfish Caching: Volunteer Dilemma

- Clique
 - Constant distances $d_{ij} = 1$
 - Variable demands $1 < w_i < \alpha = 20$
- Who goes first?
 - Node with highest demand?
 - How does the situation change if the demands are not public knowledge, and nodes can lie when announcing their demand?

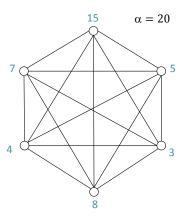
Selfish Caching with Payments


 Designer enables nodes to reward each other with payments



 Nodes decide whether to cache or not after all bids are made

• However, *PoA* at least as bad as in the basic game


4/25

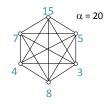
First-Price Auction

- Mechanism Designer
 - Wants to minimize social cost
 - Is willing to pay money for a good solution
 - Does not know demands w_i

Idea: Hold an auction

- Auction should generate competition among nodes. Thus get a good deal.
- Nodes place private bids b_i . A bid b_i represents the minimal payment for which node i is willing to cache.
- Auctioneer accepts lowest offer. Pays $b_{\min} = \min b_i$ to the bidder of b_{\min} .

- What should node *i* bid?
 - $-\alpha w_i \leq b_i$
 - i does not know other nodes' bids


4/27 4/28

Second-Price Auction

 The auctioneer chooses the node with the lowest offer, but pays the price of the second lowest bid!

 $\alpha - w_i$

- What should i bid?
 - Truthful ($b_i = \alpha w_i$), overbid, or underbid?

Theorem

Truthful bidding is the dominant strategy in a secondprice auction

4/29

Another Approach: 0-implementation

- A third party can implement a strategy profile by offering high enough "insurances"
 - A mechanism implements a strategy profile S if it makes all strategies in S dominant.
- Mechanism Designer publicly offers the following deal to all nodes except to the one with highest demand, p_{max}:
 - "If nobody choses to cache I will pay you a millinillion."
- Assuming that a millinillion compensates for not being able to access the file, how does the game turn out?

4/31

Theorem

Any Nash equilibrium can be implemented for free

Proof

- Let $v_i = \alpha w_i$. Let $b_{min} = \min_{j \neq i} b_j$.
- The payoff for i is $b_{min} v_i$ if $b_i < b_{min}$, and 0 otherwise.
- "truthful dominates underbidding"
 - If $b_{min} > v_i$ then both strategies win, and yield the same payoff.
 - If $b_{min} < b_i$ then both strategies lose.
 - If $b_i < b_{min} < v_i$ then underbidding wins the auction, but the payoff is negative. Truthful bidding loses, and yields a payoff of 0.
 - Truthful bidding is never worse, but in some cases better than underbidding.
- "truthful dominates overbidding"
 - If $b_{min} > b_i$ then both strategies win and yield the same payoff
 - If $b_{min} < v_i$ then both strategies lose.
 - If $v_i < b_{min} < b_i$ then truthful bidding wins, and yields a positive payoff. Overbidding loses, and yields a payoff of 0.
 - Truthful bidding is never worse, but in some cases better than overbidding.
- Hence truthful bidding is the dominant strategy for all nodes i.

MD for P2P file sharing

- Gnutella, Napster etc. allow easy free-riding
- BitTorrent suggests that peers offer better QoS (upload speed) to collaborative peers
 - However, it can also be exploited
 - The BitThief client downloads without uploading!
 - Always claims to have nothing to trade yet
 - Connects to much more peers than usual clients

4/30

- Many techniques have been proposed to limit free riding behavior
 - Tit-for-tat (T4T) trading
 - Allowed fast set (seed capital),
 - Source coding,
 - indirect trading,virtual currency...
- increase trading opportunities

- Reputation systems
 - shared history

MD in Distributed Systems: Problems

- Virtual currency
 - no trusted mediator
 - Distributed mediator hard to implement
- Reputation systems

- Malicious players
 - Nodes are not only selfish but sometimes Byzantine

Credits

- The concept for a Nash Equilibrium is from John Nash, 1950
- The definition of a Price of Anarchy is from Koutsoupias and Papadimitriou, 1999
- The Selfish Caching Game is from Chun, Chaudhuri, Wee, Barreno, Papadimitriou, and Kubiatowicz, 2004
- The Prisoner's Dilemma was first introduced by Flood and Dresher, 1950
- A generalized version of the second-price auction is a VCG auction, introduced by Vickrey, Clarke, and Groves, 1973